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In this study we combined an extensive database of observed wildfires with high-resolution meteoro-
logical data to build a novel spatially and temporally varying survival model to analyze fire regimes
in the Mediterranean ecosystem in the Cape Floristic Region (CFR) of South Africa during the period
1980–2000. The model revealed an important influence of seasonally anomalous weather on fire prob-
ability, with increased probability of fire in seasons that are warmer and drier than average. In addition
to these local-scale influences, the Antarctic Ocean Oscillation (AAO) was identified as an important
large-scale influence or teleconnection to global circulation patterns. Fire probability increased in sea-
sons during positive AAO phases, when the subtropical jet moves northward and low level moisture
transport decreases. These results confirm that fire occurrence in the CFR is strongly affected by climatic

variability at both local and global scales, and thus likely to respond sensitively to future climate change.
Comparison of the modelled fire probability between two periods (1951–1975 and 1976–2000) revealed
a 4-year decrease in an average fire return time. If, as currently forecasted, climate change in the region
continues to produce higher temperatures, more frequent heat waves, and/or lower rainfall, our model
thus indicates that fire frequency is likely to increase substantially. The regional implications of shorter
fire return times include shifting community structure and composition, favoring species that tolerate

more frequent fires.

. Introduction

Over half of the world’s terrestrial ecosystems are dependent on
re to maintain ecological structure and function (Shlisky, 2007).
ire regimes in these regions have a profound ecological role (Bond,
995) that can be strongly influenced by weather and climate
McKenzie et al., 2004). Thus in addition to the direct physiolog-
cal impacts of changes in temperature, precipitation, and CO2
oncentration due to climate change, changes in the fire regime
ill have potentially major effects on these fire-driven ecosystems

Bond et al., 2003). Since the 1980s there has been speculation

bout the impact of climate change on wildfire regimes (Balling
t al., 1992; Clark, 1988; Layser, 1980), and some studies have pro-
uced evidence of changes in fire regimes associated with recent
limate change (Gillett et al., 2004; Westerling et al., 2006). How-
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ever, most of this work has been limited to North America, Europe,
and Australia, and much uncertainty remains regarding the sensi-
tivity of wildfire to weather trends and variability in many other
fire-prone regions of the world. In this study we present a novel
model for fire return times that allows integration of decades of
regional-scale weather data at high spatial and temporal resolution,
while retaining the temporal dependence structure of a fire survival
model. We apply this model to some of the richest fire occurrence
data and high-resolution climate data in the world, that for the
Mediterranean-climate shrub lands of the Cape Floristic Region
(CFR) of South Africa, a global biodiversity hotspot. Specifically we
model the influence of local weather, variability in weather, and
global circulation patterns on fire return times across the region
(Fig. 1).

The CFR experiences a Mediterranean climate (Köppen, 1931)
with hot, dry summers and cool, wet winters in the western

half, that transitions to more even precipitation seasonality in the
east, with mean annual rainfall ranging from 60 mm to 3345 mm
(Schulze, 1997). The region is an internationally recognized hotspot
of floral biodiversity and is home to approximately 9000 plant
species, 69% of which are endemic (Goldblatt and Manning, 2002).

http://www.sciencedirect.com/science/journal/03043800
http://www.elsevier.com/locate/ecolmodel
mailto:amlatimer@ucdavis.edu
dx.doi.org/10.1016/j.ecolmodel.2009.09.016
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Fig. 1. Map illustrating the location of the Cape Floristic Region of South
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frica in relation to the African continent and the locations of the protected
reas (∼11,000 km2) included in this analysis (dark shaded areas). These areas
re predominantly mountain fynbos, a sclerophyllous Mediterranean shrub-land
cosystem. This area was divided into a 0.02◦ (∼4 km2) grid to facilitate analysis.

n contrast to other regions of the world with high levels of biodi-
ersity, the CFR species tend to be locally abundant but have small
anges and limited dispersal capabilities (Cowling and Lombard,
002; Latimer et al., 2005; Schurr et al., 2007). These factors may
ake the region’s flora vulnerable to decreased precipitation and

hifts in the seasonality of precipitation predicted under future cli-
ate change (IPCC-WGII, 2001, Section 10.2.3.4). In fact, bioclimatic
odels of species distributional shifts under the projected climate

f 2050 predict a 51–65% reduction in the area of the fynbos, the
editerranean-climate shrub lands that currently dominate the

egion (Midgley et al., 2002).
Most previous work investigating climate change impacts on

lant species has focused on the direct impact of changes in tem-
erature and precipitation and overlooked potential ecological
hanges due to shifts in the fire regime. Since various plant species
ave different strategies for responding to fire (some rely on seeds
hat require fire for germination, while others re-sprout from the
ootstock), fire return time and seasonality are important deter-
inants of the community makeup. For example, in some areas of

he CFR the dominant species (such as Protea neriifolia or P. repens)
an persist only within a narrow range (∼10–35 years) of fire return
imes (van Wilgen, 1992, p. 63). In the higher rainfall areas, fire also
lays a key role in preventing the incursion of forest species (Bond
t al., 2003). Fire in the CFR is also a significant hazard for peo-
le living in the region, as in other Mediterranean-climate regions.
or example, in the austral summer of 2000, unusually extensive
res burned over 18,000 ha in the Western Cape Province, including
0% of the natural vegetation on the Cape Peninsula (encompass-

ng metropolitan Cape Town and Table Mountain National Park).
hese fires damaged crops, destroyed over 270 residences on the
ape Peninsula alone, and resulted in an estimated US$500 million

n insurance claims. The month prior to the fires was one of the
riest on record and the preceding five days were extremely windy
nd near record high temperatures (∼41 ◦C) (Calvin and Wettlaufer,
000).

As in many areas of the world, a changing fire regime in the CFR
ould have major ecological (range shifts and changing community
omposition) and societal (risk to agriculture and residential areas)
mpacts. However, projections of future change are difficult in the
bsence of a thorough understanding of how the fire regime has
esponded to meteorological fluctuations in the recent past. There
s some evidence that the fire return interval has decreased over

he past few decades in some areas of the CFR to below historical

eans of 11–30 years (Brown et al., 1991; van Wilgen et al., 1991).
owever there has been no region-wide modelling of the histor-

cal fires to understand the sensitivity of fire return time to local
eather characteristics and global circulation patterns. These ques-
elling 221 (2010) 106–112 107

tions are especially important in the context of climate change, as
the sensitivity of the system to changes in climate at different scales
could spur other ecological shifts. In this paper we present a high-
resolution spatio-temporal model, as well as simulation results
based on the model, relating observed fire to weather records from
the CFR in an effort to understand how sensitive the fire regime is
to anomalous weather, and how responsive to it is to oscillations
in global circulation.

2. Materials and methods

2.1. Data

This analysis integrates historical fire data, interpolated
weather, and climate indices from several sources. The fire data
were compiled from field reports collected in protected areas
(about 11,000 km2) across the Western Cape Province by the Cape-
Nature management organization and consist of geo-referenced
burned area polygons and supplementary information including
the date and cause of fire, if known (de Klerk, 2008, see Fig. 1).
These protected areas are mostly expanses of contiguous moun-
tainous landscapes with largely intact native vegetation and are
rarely influenced by human activities, except at lowland bound-
aries. The vast majority of area burned (90%) was from unplanned
wildfires. For a more thorough description of the fire database, see
Forsyth and van Wilgen (2007). Fire monitoring and recording has
been relatively consistent since the late 1970s, with more patchy
records going back further, and includes over 1500 fire records
ranging in size from less than a hectare to 580 km2. To ensure that
variation in the data did not reflect a historical trend in sampling
effort, we used fire occurrence data from the period 1980–2000
only, but used weather data from 1950 to 2000, as explained below.
To facilitate modelling, these data were converted to a 0.02◦ grid
(∼2 km × 2 km) covering the monitored protected areas. We scored
fires as present in a grid cell during a season if at least 25% (∼1 km2)
of the cell burned in that season. In total, 2105 (81%) of the 2611
cells burned at least once and 10% burned 3 or more times.

The Climate Systems Analysis Group at the University of Cape
Town provided weather data that had been interpolated from
a dense network of meteorological stations using a downscaled
regional climate model (Hewitson and Crane, 2006). These data
consist of daily maximum and minimum temperature (with a
resolution of 0.05◦, about 25 km2) and precipitation (0.1◦, about
100 km2) covering the period from 1950 to 2000. Seasonal indices
of temperature and precipitation were developed from this daily
data, for the seasons defined as winter (JJA), spring (SON), summer
(DJF), and autumn (MAM). The seasonal data were standardized
by subtracting the seasonal means in each grid cell (e.g. for grid
cell number 10 in winter of 1980, the seasonal winter tempera-
ture is the average temperature for winter 1980 minus the mean
of all winter temperatures in that grid cell from 1980 through
2000). The seasonal climate variables in the model are thus “anoma-
lies” or deviations from the long-term local seasonal average. This
standardization means we can interpret the relationship of fire to
these seasonal variables as an association with inter-annual vari-
ation in seasonal weather. The effect of intra-annual variability
among seasons was then captured in the model as seasonal fixed
effects via indicator variables for each season (see details below).
This framework allows separation of the overall mean response
of fire probability to inter-seasonal fluctuations in temperature

and precipitation and the response due to variation within sea-
sons around those means. Using these data, we also calculated the
precipitation concentration coefficient, following Schulze (1997)
and Markham (1970). This is an index that quantifies precipitation
seasonality, with high values meaning that rainfall is concentrated
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n a short period within the year, and low values meaning rainfall
ccurs evenly over the whole year. In the CFR the concentration is
igh in the west (where most rain falls in the winter) and grad-
ally decreases to the east. In addition, we included the Antarctic
cean Oscillation (AAO, also known as the Southern Annular Mode)

o explore the potential relationship between fire and large-scale
irculation patterns (Marshall, 2003). The AAO is known to influ-
nce precipitation and moisture transport in the CFR by shifting the
ubtropical jet shifts northwards and increasing moisture flux into
he region, resulting in increased precipitation and humidity (e.g.

ason, 1995; Reason and Jagadheesha, 2005; Reason et al., 2002).

.2. Model overview

Most regional-scale modelling approaches relating fire and
eather at the landscape scale rely on summarizing total burned

rea data into coarse regions which are analyzed separately (e.g.
cKenzie et al., 2004; Swetnam and Betancourt, 1990), or by

ombining data from the entire region of interest (e.g. Duffy et
l., 2005). This facilitates construction of regression models, but
ffers little explanation of the patterns of fire within a region and
oes not account for the complex mosaic of different stand ages
and therefore fuel load) which can be especially important in
ystems with relatively short fire return intervals such as savan-
ahs or Mediterranean-climate shrub lands. Biomass in the fynbos

ncreases each year after fire for about 25 years, after which live
iomass decreases as the adult shrubs begin to senesce (van Wilgen,
992, p. 40). Thus a coarse-resolution modelling approach would
e unable to account for the different fire histories of local areas, or
or the increasing probability of fire over time in those areas due to
uel accumulation after fires.

Our model is related to statistical survival analysis, because it
stimates the probability that no fire occurs in each grid cell at
ach seasonal time step (i.e. grid cell survival), given the observed
ata and given that no fire occurred in the previous season (see
ection 2.3). There are two major innovations in the model, each
f which allows us to extract more information from the data than
tandard fire regression analyses. First, by defining distinct prob-
bilities of fire (i.e. “failure to survive”) in each time step at each
ocation, the model is qualitatively similar to a Kaplan–Meier semi-
arametric survival analysis (Venables and Ripley, 2002), but unlike
his class of model, our approach builds an explicit regression rela-
ionship between survival probabilities in each location at each
ime step and the associated high-resolution explanatory variables.
econd, our modelling framework also handles the heavily cen-
ored nature of fire data in a novel way. The first fire interval for
ost grid cells (those in which there was no fire in the first time

tep) is only partially observed (i.e. left-censored). In order to esti-
ate the cumulative probability of survival for each grid cell in the

rst time step, we had to account for fires that happened prior to the
eginning of our dataset (i.e. pre-1980). This was accomplished by
ffectively predicting survival probabilities back in time using the
arameters fitted from the 1980 to 2000 period. These probabili-
ies for the seasons that make up the censored time period together
efine a multinomial probability for each grid cell that represents
he distribution of previous fire times, so that these unobserved
re occurrences were estimated along with the other parameters

n the models. This allowed us to incorporate into our parameter
stimates the censored information contained in the fire records
or the cells that did not burn and for other cells with long periods
ithout fire.
.3. Model details

Our model specification reflects the fact that we study fire
ncidence within given time intervals and the fact that covari-
elling 221 (2010) 106–112

ates which influence the probability of a fire vary over time. So,
we build our model conditionally, in the spirit of survival analy-
sis (e.g. Klein and Moeschberger, 2003). We model the probability
of a fire in a given time interval given no fire up to that inter-
val. More precisely, let Zi be the time since last fire in cell i and
let pit = P(Zi > t|Zi > t − 1), so that the cumulative probability that a
grid cell burns increases over time. So, 1 − pit is the probability of a
fire in the interval {Zi ∈ �|t − 1 < Zi ≤ t} given no fire up to time
t. Note that pit = Si(t)/Si(t − 1) where Si(t) = P(Zi > t), the so-called
survivor function. We use a standard generalized linear model
form, with the probit transform, to relate the probabilities, pit to
the environmental factors that are the explanatory variables for
each grid cell at each time step, i.e. probit(pit) = XT

it
ˇ. It is possi-

ble to extend ˇ to ˇt, enabling time-varying coefficients or to ˇi,
enabling spatially varying coefficients (Banerjee et al., 2004). Note
that, under this specification, the chance that time since last fire
is in the interval {t − 1 < Zi ≤ t} can be calculated recursively. That
is, the unconditional probability, P(Zi > t) = Si(t) = pitpi,t−1· · ·pil and
P(Zi ∈ {t − 1 < Zi ≤ t}) = Si(t) − Si(t − 1) = (1 − pit)pi,t−1· · ·pil. Expressed
in different terms, every observed fire time is interval-censored
and is modelled as a multinomial trial with interval probabilities as
above.

Finally, we recognize that we have further censoring of the data.
At any cell i, we do not know the time since the first fire (if there
has been a fire at that location); we only know that it was before we
started collecting data. Similarly, we do not get to see the time of the
last fire at site i; we only know that it occurred after we stopped col-
lecting data (i.e. post-2000). We treat the first situation as a missing
data problem. If we knew the time of the previous fire before data
collection began, we would know the time since last fire for the first
fire in i, hence we could write down the likelihood as above. On the
other hand, if we know the values of the model parameters, we can
write down the conditional distribution for the missing fire time.
With a defined conditional distribution, we can introduce a Gibbs
sampler in our Markov Chain Monte Carlo (MCMC) algorithm to
sample the unobserved fire times from the posterior distributions
of the unknown parameters (Gelfand and Smith, 1990). A key com-
ment here is that this requires the historical (1950–1980) Xits (i.e.
climate data) which, fortunately, we have. For the second situation,
the unknown time of the next future fire for each grid cell, we know
that the time is at least the time up to the end of the study period,
so we can again use the expressions above to specify the associ-
ated probability (in this case, this is the probability that no fire has
occurred before the end of the time period for which we have data).
Finally, with multiple fires at i during our observation period, we
reset the survival probability to 1 for the first season following after
each fire.

2.4. Model fitting details

Each data point Zi (i.e. time since last fire in cell i) has an associ-
ated set of covariate vectors {Xij, j = −112, . . ., 0, 1, . . ., T}, where
112 is the number of seasons prior to the beginning of the fire
record (1951–1979) and T = 80 seasons of fire data 1980–2000.
We observe Zi in an interval between two fires, say It, or else
after the last observed fire. We can denote the times of the fires
in a cell as ti. For each cell i, there is one initial time of fire
ti0 that is unknown, since this fire occurred before the begin-
ning of the data set. Subsequent fires in the same cell have been
observed, so the times ti of those fires are known. As described

above, these fire times are observed as conditionally indepen-
dent multinomial trials with possible values ti0 + 1, ti0 + 2, . . ., T,
>T (call this last interval IT+1 for convenience) with probabilities
qij = (1 − pij)

∏
(ti0+1<1<j)pil, j = ti0 + 1, . . . , T with (for notational

convenience), qi,T+1 = (ti0 + 1 < 1 < T)pil. So, formally, the likelihood is,
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Table 1
Seasonal parameters estimated in the full model—the coefficient for winter repre-
sents the overall intercept and the other seasons were estimated using winter as
the baseline.

Season Mean 95% credible interval
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Fig. 2. Plot of the regression coefficients and their 95% credible intervals, sorted
by value. Negative values indicate correlation with decreased chance of survival
(increased chance of fire). Precipitation concentration is an index defining the extent
Winter 3.22 3.16, 3.29
Spring 2.63 2.50, 2.76
Summer 2.16 2.03, 2.29
Fall 2.47 2.35, 2.6

(q; Z) = L(ˇ; Z) =
∏

i

f (Zi|qi) =
∏

i

∏

j

qVij
ij

here Vij = 1 if Zi ∈ Ij, and Vij = 0 otherwise. Practically, we only have
he qij for which Vij = 1. With a prior on ˇ we have a fully specified
ayesian model. In fact, for the unknown ti0, we adopt a discrete
niform prior on {−112, −111, . . ., −1, 0}and then do Gibbs updates
or the ti0 given ˇ, followed by updates for ˇ given all of the ti0s.

Because of the time-varying Xijs, the qijs are complicated func-
ions of ˇ. However, pil only depends upon Xil, i.e. under a probit

odel, pil = ˚(XT
il

ˇ), where ˚ is the standard or unit normal cumu-
ative probability distribution. It is often easier to introduce latent
aussian variables in probit models (Albert and Chib, 1993). In

he present setting consider independent Wil∼N(XT
il

ˇ, 1) so that
(Wil > 0|ˇ) = pil, i.e. we interpret Wij < 0 ⇔ Zi ∈ I1. Then, we can
ugment the model to:

i

f (Zi|{Wij})
∏

i

∏

j

f (Wij|ˇ)f (ˇ)

ow, in addition to updating ˇ and the ti0s, we have to update the
ijs. However, given Zi, we know the constraints on the Wij and so
e sample them as normal variables, truncated accordingly, as is

tandard in a probit model (Albert and Chib, 1993).

.5. Model selection

We considered two candidate models, the full model described
bove and the full model without the AAO index. Model selection
as accomplished by comparing the deviance information crite-

ion (DIC), which penalizes for poor model fit and model complexity
nd selected the model with the lower DIC (Gelman et al., 2004).
he model was coded and run in the R statistical environment (R
evelopment Core Team, 2008). All models were run with two
hains for 10,000 iterations after a burn in of 2000 iterations, result-
ng in 20,000 samples from the posterior probability distribution.
onvergence was assessed after visual inspection of the chains and
ith Gelman and Rubin’s diagnostic (Gelman and Rubin, 1992).

. Results

The model revealed the important influence of weather on the
robability of a grid cell’s surviving without fire in each time step
cross the CFR. We modelled the influence of environmental factors
n the probability of fire survival, given survival in the previous
eason, and thus the signs of the coefficients are opposite of what
ight be expected in a typical regression framework. For example,

he seasonal effects, which represent the contribution of the mean
easonal weather to survival probability across all grid cells, reflect
he relative probability of absence of fire in each season, so that,

or example, summer has the lowest coefficient value and thus the
ighest probability of fire (Table 1).

The influence of climatic factors are interpreted using the pos-
erior regression coefficients. Since this is a probit regression with
tandardized covariates, the coefficients represent the amount
to which rainfall is restricted to a few months, AAO is the Antarctic Ocean Oscillation
index, seasonal average temperature is the average temperature during summer
(DJF), fall (MAM), winter (JJA), or spring (SON) seasons.

of change of seasonal fire probability in standard deviations on
the probit curve (which is the inverse of the cumulative nor-
mal probability distribution) due to a standard deviation change
in the covariate. Seasonal average temperature had by far the
largest influence of all climatic factors on fire probability, with a
comparatively large negative coefficient (−0.219, 95% CI: −0.238,
−0.201) indicating substantially higher fire probability in anoma-
lously high-temperature seasons. Average temperature of the
hottest week similarly had a significant, although small, negative
coefficient (−0.024, 95% CI: −0.040, −0.008). Average annual tem-
perature, by contrast, had a relatively small positive coefficient
(0.055, 95% CI: 0.041, 0.069). Since seasonal and annual temper-
ature are related, to assess the net effect of temperature on fire
survival probability, it is necessary to account for both the effect of
the previous season and the current season. Here, in any particu-
lar season, fire probability is dominated by the mean temperature
of the season, offset to a lesser degree by mean annual tem-
perature. The highest probability of fire thus occurs in a year of
high-temperature contrasts, where temperature overall may not
be high, but which includes anomalously hot periods.

An analogous contrast was observed in the effects of precipi-
tation, although the absolute size of the coefficients was smaller.
Higher precipitation in the preceding year was negatively asso-
ciated (−0.052, 95% CI: −0.063, −0.042) with the probability of
survival without fire, while higher precipitation in a particular sea-
son had a positive influence (0.059, 95% CI: 0.042, 0.075) on the
probability of survival (Fig. 2). As with temperature, the greater
contrast associated with a dry season in a wet year enhanced the
probability of fire occurrence.

The AAO had the coefficient with the second largest magnitude
(significantly negative at −0.110, 95% CI: −0.123, −0.097), indi-
cating substantially decreased probability of survival without fire
during positive AAO phases. The model including AAO was strongly
preferred over the model including only local weather variables
(DIC = 33,733 versus 33,974). Precipitation concentration, which is
an indicator for the East–West difference in rainfall seasonality was
slightly positive (0.014, 95% CI: −0.001, 0.029) indicating a slight
tendency for increased fire risk in the eastern regions, after con-

trolling for other variables.

Using the estimated parameters, it is possible to predict mean
fire probability (defined as 1 minus the cumulative survival prob-
ability) through time and across space. Mean region-wide fire
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Fig. 3. Modelled cumulative fire probabilities from two time periods, 1951–1975
and 1976–2000. The dark line is the mean cumulative probability of fire due to the
observed weather (estimated using the fitted coefficients) averaged across all cells
from 1976 to 2000. The gray region represents the boundaries of the 2.5 and 97.5
quantiles (95% of the data) of the cumulative fire probability and represents the
spatial variability in fire probability across the region from 1976 to 2000. The dotted
line is the cumulative probability of fire from 1951 to 1975, which is calculated from
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he coefficients estimated using the 1980–2000 fire data and weather (see text for
etails). The arrow identifies the shift in mean fire return time from the earlier to
he later time period.

robability curves are displayed in Fig. 3, starting with a value
f 0 in the first season (i.e. assuming a fire occurred in the previ-
us season), and increasing over a 25-year time period in seasonal
ncrements that depend on the environmental conditions in each
uccessive season. This facilitates a comparison between poste-
ior predictions of fire probabilities for the two periods 1951–1975
nd 1976–2000, based on the fitted model. The curves show more
apid increase in predicted fire probability, and thus shorted mean
re return time (defined as the time the fire probability increases
bove 50%) for the more recent decades (1976–2000). The model
redicts a mean fire return time of 18.75 years for 1976–2000, ver-
us 22.75 years for 1951–1975. The broad uncertainty envelope
hown in Fig. 3 reflects spatial variation in predicted mean return
ime, as shown in Fig. 4. This variation is related to extensive spatial
limatic variability across the region—for example, annual rainfall

aries from 60 mm to 3345 mm, and rainfall seasonality that ranges
rom nearly aseasonal to highly concentrated in 2 months.

ig. 4. Predicted mean fire return times for the modelled portion of the Cape Floristic
egion. For each 2 km × 2 km grid cell, the grayscale shade represents the mean
eturn time, as indicated in the legend. The mean for each grid cell is the number of
ears after a previous fire at which cumulative fire probability is predicted to exceed
.5, averaged over predictions using all posterior samples of the model parameters.
elling 221 (2010) 106–112

4. Discussion

The probability that a patch of CFR fynbos vegetation will sur-
vive a season without fire is most strongly influenced by seasonal
temperature (primarily seasonal average but also hottest week),
and secondarily by precipitation. The negative coefficient for total
annual precipitation may reflect an increase in biomass and espe-
cially fine fuels after an anomalously wet previous year, as has been
observed in other systems (Esque et al., 2003; Grau and Veblen,
2000) as well as in the CFR (Seydack et al., 2007).

Fire in the CFR is also strongly influenced by global circula-
tion patterns, as indexed by the AAO. This relationship has not
been previously reported. During the negative phase of the AAO,
the subtropical jet shifts northwards and low level moisture trans-
port to South Africa increases, leading to wetter winter and spring
conditions in the Western Cape, and generally higher humidity in
summer (Reason and Rouault, 2005). Thus the negative coefficient
reflects a lower fire survival probability (i.e. greater fire probability)
when the AAO is in a positive phase. The AAO has had an increasing
trend since the late 1960s, possibly due in part to changes in strato-
spheric ozone concentrations and greenhouse gases (Thompson
and Solomon, 2002). As an additional mechanism relating large-
scale atmospheric and ocean circulation, sea surface temperatures
in the South Atlantic are known to affect precipitation and mois-
ture transport across the Western Cape (Blamey and Reason, 2007;
Reason and Jagadheesha, 2005; Reason et al., 2002). Large-scale
circulation patterns have been found to be correlated with fire
events in Tasmania, (Nicholls and Lucas, 2007), Alaska (Duffy et
al., 2005), the continental United States (Gan, 2006), and Argentina
(Kitzberger, 2002). This finding also raises the possibility of using
the AAO, which may be predictable several months in advance, to
inform prediction of fire activity in forthcoming seasons in the CFR.

This novel modelling framework offers significant advantages
over traditional regression methods and other commonly used
methods for analyzing spatial fire data. Because we are modelling
the probability of survival (absence of fire) for each time step, it
is possible to examine the estimated survival probability curve for
any observed time period and any particular location (with a full
estimate of the associated uncertainty). This facilitates quantita-
tive comparisons between sites and across years. Our approach
could be duplicated in regions that have additional or different
environmental drivers by incorporating these into the matrix of
Xits. For example, variables such as humidity and wind speed are
also likely correlated with fire probabilities (but these data were
unavailable for our region). One advantage of the statistical mod-
elling framework presented here is the flexibility to investigate the
effects of various drivers without needing to fully specify the mech-
anistic link. Of course, as a statistical regression-based model, it
describes phenomenological relationships between environmen-
tal factors and fire, not mechanistic relationships based on the
physics of ignition and flame propagation that are incorporated
into fire behavior models. In contrast to mechanistic models with
fixed parameters, our Bayesian approach results in full posterior
distributions for all unknown model parameters (Clark, 2007). This
allows us to estimate the unknown parameter values (fire probabil-
ities and their relationship to weather variables) from the observed
data, rather than specifying them a priori. The goal of our approach
is distinct from and complementary to such physical models: we
aim to quantify and describe patterns in fire regimes and corre-
lations with potentially driving factors over large scales in space
and time, rather than to simulate the dynamics of individual fires.

Our model was constructed to analyze regional fire patterns over
a period of 20 years in a system with an average return inter-
val of about 20 years. The spatially explicit approach allowed us,
in effect, to substitute space for time and allow estimation of the
influences of weather variables despite the relatively short record.
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here have been some changes in fire management strategies and
ther socioeconomic shifts including the end of apartheid and rapid
rbanization over this time. Nevertheless, our methods are fairly
obust to these factors because we are looking for broad scale pat-
erns in fire probabilities from season to season across the entire
egion, rather than trying to explain the cause of any specific fire.
hus our approach is robust to potential errors in the data (such as
n occasional missing fire or uncertainty in the interpolated tem-
erature) or various socioeconomic drivers that may influence the
re regime.

This analysis confirms that fire probability in the fynbos regions
f the CFR is sensitive to local- and global-scale fluctuations in cli-
ate. The regional implications of a changing fire frequency include

hifting community composition towards more fire tolerant species
nd the possible elimination of plant species that are obligate seed-
rs. As mentioned earlier, many areas of the CFR are dominated
y plants (such as P. neriifolia or P. repens) that require time to
each reproductive maturity and so can persist only within a nar-
ow range (∼10–35 years) of fire return times (van Wilgen, 1992,
. 63). For example, a shift in community composition has been
bserved in response to prescribed short interval fires in the Jonker-
hoek valley of the CFR. van Wilgen (1981) compared vegetation
rom areas with three fire histories (average return time 6 years,
1 years and >37 years) and found that the short 6-year return

nterval reduced biomass from 35 t ha−1 to 6 t ha−1 and eliminated
ong-lived, reseeding-dependent shrubs.

The short-term hydrological effects of fire may also be important
n fynbos. In the Swartboskloof research area, streamflow volume
ncreased 16% in the first 2 years after fire (van Wilgen, 1992, p.
19). The loss of biomass after fire leads to decreased interception
nd evapotranspiration, which ultimately increases runoff. Because
egetation biomass increases relatively quickly after fire, these
ncreases are likely to be short lived; however, given increasing

ater demand in the region and growing urban population in Cape
own, even slight changes in supply may have meaningful policy
mplications in some parts of the region (Hewitson, 2006; Smith
nd Hansen, 2003).

These results also suggest that the fire regime in the CFR is
ikely to respond to future climate change. Our comparison of

id- and late-twentieth-century conditions graphically illustrates
ow fire probabilities are inferred to have shifted in response to
istorical changes in precipitation, temperature, and global circu-

ation, decreasing 4 years between mid- and late-twentieth century
Fig. 3). If, as projected for the region (cf. Hewitson, 2006), climate
hange in the CFR continues to lead to higher seasonal tempera-
ures, more frequent heat waves, and lower seasonal rainfall, our

odel projects that fire frequency is likely to continue to increase.
owever, an important unknown is how biomass accumulation

ates may change in a warmer, drier future. Therefore projections
f fire frequency into the future should take dynamic biomass
ccumulation rates into account. Most research on the ecologi-
al impacts of climate change has focused on the direct impacts
f changes in temperature and precipitation. However, in fire-
ependent ecosystems, the indirect effects of changes in fire regime
ay be even more important. This research has important ram-

fications for conservation and management of ecosystems like
he CFR. In addition to added risk to residential areas and agri-
ulture, a changing fire regime may lead to ecological changes in
n ecosystem which is already stressed by climate change, habitat
ragmentation, and land-use change (Hannah et al., 2005). A thor-
ugh understanding of the strength and nature of the relationship

f vegetation dynamics (including fire) and inter-annual weather
ariability is vital to understanding how climate change may impact
cosystems like the CFR. Decision makers (reserve managers, con-
ervation biologists, and policy-makers) need reliable information
nd models to develop effective management practices. This is
elling 221 (2010) 106–112 111

especially important in the context of a changing environment,
as managers must make decisions based on predictions of future
changes.
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